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Biasymptotic formula for the turbulent energy cascade

R. Badii* and P. Talkner
General Energy Research Department, Paul Scherrer Institute, 5232 Villigen, Switzerland

~Received 1 June 1999!

We present a family of differential models for the scaling exponentstp which characterize the moments of
the energy dissipation rate in turbulence. This scheme interpolates between the asymptotic values of the
derivativetp8 of tp versusp in the limitsp→6` and reproduces the negative-p part of the exponents spectrum
tp as well, in contrast with other recent conjectures. Each member of the family is defined by a sigmoidal
function, the form of which remains open to theoretical investigations.@S1063-651X~99!10510-5#

PACS number~s!: 47.27.Gs, 02.50.2r, 05.40.2a
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I. INTRODUCTION

One of the most striking features of turbulent flows
high Reynolds number is the apparent universality of sm
scale velocity fluctuations, for which the effects of th
boundary conditions can be neglected. In particular, the
ments of suitable observables characterizing spatial dom
of size l present a power-law dependence onl , with uni-
versal exponents. This is expected to hold in the so-ca
inertial range l min!l !l max, where l max is the energy-
injection scale andl min is the length below which dissipa
tion prevails. For example, the moments of the longitudi
velocity difference d(l )5@v(x1l ,t)2v(x,t)#•l /l ,
wherev(x,t) is the velocity field of the fluid at the space
time point (x,t) andl is a displacement vector of lengthl ,
are expressed as

Sp~ l ![^dp~ l !&;l zp. ~1.1!

This behavior was first postulated by Kolmogorov@1# under
the assumption that energy was passed from the large to
small scales without alteration in the inertial range~IR!, so
that the only relevant parameters for the statistics werel and
the mean energy dissipation rate^«(l )&, which is nearlyl
independent. The local rate«(l ) is defined as

«~ l !5
2n

uBu EB
(
i j

Si j ~x!Sji ~x!dV, ~1.2!

whereB5B(x;l ) is a domain centered atx and having vol-
ume uBu;l 3, Si j 5(]v i /]xj1]v j /]xi)/2 is the symmetric
part of the strain rate tensor, andn is the kinematic viscosity.
Furthermore, Kolmogorov@1# proved the exact IR relation

^d3~ l !&;2
4

5
l ^«~ l !& ~1.3!

and applied dimensional considerations to the Navier-Sto
equations@2# obtaining the predictionzp5p/3 ~K41!.

Deviations of the experimental estimates ofzp from this
value and theoretical objections led to the formulation o
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refined hypothesis~K62! @3,4# which assumed Eq.~1.3! to be
a particular case of the more general relation

^dp~ l !&;l p/3^«p/3~ l !& ~1.4!

which links the fluctuations of the velocity field with those
the dissipation field. By defining energy dissipation exp
nentstp via the moments

M p~ l ![^«p~ l !&;l tp, ~1.5!

this link is finally expressed by

zp5p/31tp/3 . ~1.6!

Experiments show that the exponentstp deviate consider-
ably from zero, especially for largeupu @5–7#. The refined
K62 approach, under the assumption of a lognormal statis
for the variable«(l ), yields the expression

tp
(K62)52t2p~12p!/2, ~1.7!

wheret2'20.18@5–8#. While Eq.~1.7! provides a good fit
to the data for 0<p<2, the parabolic falloff of the curve is
too steep.

Since direct estimates oftp for large upu are statistically
unreliable and our physical understanding of turbulent fl
tuations is not sufficient to yield the form of the functiontp ,
even up to unknown parameters, simple analytical appro
mations totp have been attempted. The underlying assum
tions essentially fall into three classes: in the first, the ene
cascade is viewed as a multiplicative stochastic proc
@9–14#; in the second, assumptions are made about the
tribution of the ‘‘breakdown coefficient’’ «(r l )/«(l )
@15,16# ~where 0,r ,1); in the third, assumptions about th
asymptotic behavior oftp for p→1` are combined with
scaling laws which relate momentsM p21 , M p , andM p11
@Eq. ~1.5!# with one another@17,18#, rather than with the
length scalel .

In the present paper, we propose a differential reformu
tion of the latter approach which accounts for arbitrary
crements to the orderp ~i.e., not just61), modifies accord-
ingly the asymptotic scaling assumption, and takes i
account the limitp→2` as well. This goal is achieved b
introducing a class of sigmoidal functions which control t
shape~curvature! of the exponenttp versusp. Some yield
4138 © 1999 The American Physical Society
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better agreement with the experiment forpP(21,3), some
outside this range. As a result, the differences among var
current approximations@16–19# and their relative degree o
success can be easily assessed.

Since these are essentially phenomenological models
based on any real physical understanding of the basic me
nisms of turbulence, our introduction of a whole class
model functions should not be dismissed as a mere techn
artifact to achieve a fit but seen as a further confirmation
no physical criterion presently exists to discriminate betwe
possible models. As already suggested in Ref.@19#, it is un-
likely that this goal may be achieved by experiment on
Indeed, all of the functions we consider provide good fits
the experimental estimates. The latter have been perfor
on different measurements of atmospheric turbulence w
Reynolds-Taylor numbers around 10000, sampling rates
tween 2 and 30 kHz, spatial resolution of 2 mm, and 12
accuracy@7,8#.

II. MODEL

Rather than studying thel dependence of the momen
M p(l ) ~1.5!, She and Le´vêque @17# have proposed to com
pare moments of different orderp with one another at a fixed
scalel : in particular, they considered the ratio

Zl ~p,q!5M p~ l !/Mq~ l !;l tp2tq ~2.1!

for q5p21 and postulated the relation

Zl ~p11,p!5ApZl
b~p,p21!Zl

12b~`11,̀ !, ~2.2!

whereAp is independent ofl , b is a constant, andZl (`
11,̀ )5 limp→`Zl (p11,p). By inserting Eq. ~1.5! into
~2.2!, assuming thatZl (`11,̀ );l 2t1, with t152/3, and
using the relations

t05t150, ~2.3!

She and Le´vêque ~SL! finally obtained

tp
(SL)52

2

3
p12F12S 2

3D pG . ~2.4!

Although this formula is close to the experimental finding
the choicet152/3 has been criticized by Novikov@16#, who
proposed the valuet151: this has led to a numerical mod
fication of the SL formula by Chen and Cao@18# which reads

tp
(CC)52p1@~11t2!p21#/t2 . ~2.5!

While the latter is closer to the experimental results in
range20.5<p<5, the former is slightly more accurate fo
p.5 @7#. Moreover, both functions exhibit an exponent
falloff for negativep which is in stark disagreement with th
observation. This should not be surprising, since these m
els are based on a conjecture about the limitp→`. Indeed, a
linear behavior oftp seems to be correct, within the ava
able precision, also forp,0 @7#. Finally, the scaling law
~2.2! is not well verified, especially for smallupu, where the
increment by 1 inp is too large~a simpler and more accurat
relation between moments has been illustrated in Ref.@7#!.
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Motivated by these inconsistencies, we first reformul
the SL approach using an arbitrary incrementh for the mo-
ment’s orderp and later extend it by introducing a scalin
exponent forZl (p1h,p) in the limit p→2` as well. We
rewrite Eq.~2.2! as

Zl ~p1h,p!;Zl
bh~`1h,`!Zl

12bh~p,p2h!, ~2.6!

where Zl (`1h,`)5 limp→`Zl (p1h,p), b>0 is a con-
stant andh is an arbitrary real increment. This equatio
clearly implies the vicinity ofZl (p1h,p) andZl (p,p2h)
~an identity for h→0) and attributes a ‘‘weight’’ to the
asymptotic valueZl (`1h,`) which vanishes forh→0
@i.e., the first factor on the right-hand side~RHS! of Eq. ~2.6!
tends to 1#. Assuming

Zl ~`1h,`!;l 2t1h ~2.7!

and recalling Eq.~1.5! yields

tp1h2tp'2bt1h21~12bh!~tp2tp2h!. ~2.8!

Subtractingtp2tp2h from both sides, dividing byh2, and
taking the limith→0 yields the differential equation

tp9'2btp82bt1 , ~2.9!

where each prime denotes a derivative with respect top.
Equation~2.9! is the analog of the finite-differences relatio
~7! of Ref. @17#. Upon integration, and recalling Eq.~2.3!,
one obtains

tp5
t1

12g
~12gp!2t1p, ~2.10!

whereg5e2b. Notice that an additional assumption made
@17# about the codimension of the set of points support
the most intense events in a turbulent flow is not necessar
the present derivation. In fact, SL’s and CC’s formulas~2.4!
and ~2.5!, are recovered by the positions (t1 ,g)5(2/3,2/3)
and (t1 ,g)5(1,11t2), respectively.

In order to treat the regionp,0, in such a way that no
exponential divergence occurs, it is necessary to allow fo
change of sign before the first derivative oftp in Eq. ~2.9!.
Moreover, we make a linearity assumption fortp in the limit
p→2` @7#: in fact, in such a limit,^«p(l )&→«min

p (l ),
where«min is the minimum value assumed by«(l ), and Eq.
~1.5! implies thattp;t2p, for somet2 . Hence, in analogy
with Eq. ~2.7!, we assume

Zl ~2`1h,2`!;l t2h. ~2.11!

We further interpolate between the two asymptotest2p and
2t1p by introducing a functionf (p) with the following
properties:

lim
p→2`

f ~p!521,

f 8~p!>0, f 9~a!50, 2`,a,1`, ~2.12!

lim
p→1`

f ~p!511,
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4140 PRE 60R. BADII AND P. TALKNER
i.e., the function has two horizontal asymptotes and an
flection point atp5a: three examples are shown in Fig.
Accordingly, we modify Eq.~2.8! to

tp1h2tp'2
bh2

2
$t2@12 f ~p!#1t1@11 f ~p!#%

1@12bhg~p!#~tp2tp2h!, ~2.13!

where the first term on the RHS accounts for the swi
between the contributions of the two asymptotes and
functiong(p) in the second term on the rhs satisfies the sa
conditions asf (p), so that the sign in front oftp8 changes
upon variation ofp: this ensures that no exponential dive
gence occurs forp→2`.

The continuous limit,h→0, now yields

tp9'2bg~p!tp82b@S1D f ~p!#, ~2.14!

where S5(t11t2)/2 and D5(t12t2)/2. For simplicity,
we posef (p)5g(p) in the following. Forp@1, Eq. ~2.14!
reduces to Eq.~2.9!. The asymptotic limitsupu→` are easily
verified: setting limupu→`tp950, in fact, yieldstp8→2t1 , for
p→1`, andtp8→t2 , for p→2`.

Equation~2.14! defines a class of models~more precisely,
fit functions tp), one for each choice of the functionsf (p)
and g(p), which depend on four parameters:b, which
weighs the relative importance of the asymptotic values
Zl (p1h,p) with respect to the current one@see Eq.~2.6!#
and is the counterpart ofb in Eq. ~2.2!, the asymptotic slopes
t1 and t2 , and the valuep5a at which the functionf (p)
@andg(p)] has the inflection point. Of course, bothf (p) and
g(p) might contain more parameters: in the following, ho
ever, we shall constrain ourselves to elementary functi
which satisfy conditions~2.12!, with the further simplifica-
tion f (a)50.

The simplest choice for analytical calculations isf (p)
5g(p)52H(p2a)21, whereH(x) is the Heaviside step
function @20#. Upon substitution, Eq.~2.14! reads

tp95H btp82bt2 for p,a,

2 btp82bt1 for p.a.
~2.15!

FIG. 1. Three of the sigmoidal functionsf (p) vs p employed in
the computation oftp : at p52 ~indicated by the vertical dashe
line! these functions are, from top to bottom, tanh(p2a),
(p2a)/A11(p2a)2, and 2 arctan(p2a)/p, with a50.5.
-
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A first integration yields

tp85H A2ebp1t2 for p,a,

A1e2bp2t1 for p.a,
~2.16!

whereA2 andA1 are constants. A second integration fina
yields the ‘‘biasymptotic’’ formula

tp55
A2

b
ebp1t2p1B2 for p,a,

2
A1

b
e2bp2t1p1B1 for p.a,

~2.17!

which contains the two further constantsB2 and B1 . The
values ofA6 andB6 can be fixed by imposing the continuit
of tp8 andtp at p5a and recalling relations~2.3!:

A2eab1t25A1e2ab2t1 ,

A2

b
eab1at21B252

A1

b
e2ab2at11B1 ,

A2

b
1B250,

2
A1

b
e2b2t11B150.

III. COMPARISON WITH THE EXPERIMENT

The test functiontp of Eq. ~2.17! contains four unknown
parameters (a, b, t2 , andt1), the meaning of which is quite
clear:a determines the position of the maximum oftp , b the
speed of the crossover from a parabolic shape aroundp5a
@as in the K62 equation~1.7!# to a straight line behavior for
upu→`, andt2 and t1 are the asymptotic slopes.

Lack of physical insight in the mechanisms of turbulen
makes an estimation of these parameters utterly difficult.
far, not even the valuea'0.5 has been explained: to ou
knowledge, the question itself of the position of the ma
mum of tp has never been posed. Similarly, the portion
the curvetp vs p for p,0 has not been studied until recent
@7#: therefore, no guess exists about the value oft2 . Vice
versa, at least two proposals exist fort1 , as discussed abov
in connection with equations~2.4! and ~2.5!. Finally, the
value of b is the least likely to be fixed by straightforwar
physical considerations, since it depends on the form of
function f (p) used to interpolate between the asympto
limits p→6`.

In fact, comparison with the experimental data shows t
a broad class of functionsf (p) yields equally accurate fits
~of course, for different parameter values!. This should not
be surprising since even the step function provides good
sults, notwithstanding its discontinuity. In addition
2H(p2a)21, we have tested the following functions~we
pose x5p2a, for simplicity!: sgn(x)@12e2uxu#, tanh(x),
x/A11x2, and 2arctan(x)/p.

The curvetp vs p from Eq. ~2.17! that best fits the ex-
perimental data is shown in Fig. 2: the length of the er
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bars, estimated from comparison among various atmosph
time series@7#, was used as a weight for the data points. T
resulting parameter values area50.475, b50.278, t2

51.06, andt150.873. While a is indistinguishable from
0.5, within the resolution allowed for by the statistical erro
the other three values are close to those of the CC form
~2.5!. This, in fact, predictsb52 ln g52 ln(11t2)'0.25
@see Eq.~2.10!#, and assumest25t151. A similar fit, made
with uniform weights, however yieldsa50.488, b50.468,
t250.717, andt150.656: that is, values much closer to th
SL formula ~2.4! ~for which b50.406 andt25t152/3).

The range in whichp has been varied has been confin
to @24,7# in order to avoid fitting highly unreliable dat
points: belowp524, signal discretization and instrument
noise are the main hindrance to the analysis; abovep57 low
statistics and, possibly, nonstationarity play a major role.
timates made at highp values~e.g.,p.10), as often reported
in the literature, should be taken with skepticism. Notwi
standing these precautions and the good quality of our
~high Reynolds-Taylor number, resolution and sampl
rates!, the precision of the results is not sufficient to discrim
nate between different interpolating functionsf (p) or differ-
ent models. For comparison, we mention that a good fi
obtained with f (x)52 arctan(x)/p, a50.5, t250.71, t1

50.63, andb50.38. The biasymptotic formula Eq.~2.17!,
while showing a much better agreement with the data t
SL’s or CC’s formulas, which diverge exponentially forp
→2`, does not definitely turn the scale in favor of eith
contender.

In Fig. 3, we display the differences between the e
mated values oftp and the two best-fit functions describe
above~with uniform and nonuniform weights!. The weighted
fit ~open circles! is closer to the experiment for 0,p,2 but
more distant forp,23 andp.6 @as already remarked, i
yields a curve close to Eq.~2.5! which has similar features#.
It must be noticed that these fits are made over all value
p and not only forp.0, which is the range of ‘‘validity’’ of
the ‘‘one-sided’’ SL-CC approaches.

These results show, once more, that the question of
asymptotic behavior oftp for upu→` can hardly be settled
from experimental data@19#, unless considerably better es
mators oftp are found. An improved scaling relation, whic
accounts for deviations of the moments~1.5! from power-

FIG. 2. Values oftp vs p, estimated from various atmospher
time series, compared with the best fitting curve obtained from
~2.17!. The length of the error bars has been used as a weight
Marquardt-Levenberg least-square algorithm.
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law behavior is currently under investigation. Also, corre
tions to scaling arising from the influence of large-scale flu
tuations@21# could be profitably applied.

Finally, in order to test the symmetry of the curvetp vs p
aroundp51/2, we have postulated the extended scaling
lation

M p;M12p
ap , ~3.1!

whereM p is defined in Eq.~1.5! andap5tp /t12p is a new
exponent to be estimated directly from Eq.~3.1!. Asymmetry
is, hence, characterized by the deviation ofap from 1. The
results, reported in Fig. 4, confirm a definite asymme
which cannot be easily detected from inspection of Fig. 2
which is clearly revealed by the fits made with the biasym
totic formula ~2.17!.

IV. CONCLUSIONS

We have introduced a family of differential models fo
the scaling exponent of the energy dissipation rate in tur
lence. They are characterized by sigmoidal functions and
quire physical input for~at least! four different parameters
Comparison with the experiment shows that good results
be obtained with quite a broad choice of values, both
positive- and negative-order energy dissipation mome

q.
a

FIG. 3. Difference between the curvetp vs p, estimated as in
Fig. ~2!, and the best fitting curvestp

( i ) obtained from Eq.~2.17!
using the error bar lengths as weights (i 51, open circles! and no
weights at all (i 52, solid circles!.

FIG. 4. ‘‘Symmetry’’ exponentap5tp /t12p vs p, estimated
from Eq. ~3.1! for the same data as in Fig. 2. The smallest value
p considered is 0.5, whereap51.
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Therefore, we confirm the difficulty of fixing such param
eters by experiment only.

Hints for a physical modeling, however, can be obtain
from the differential equations. Indeed, the choice of a c
stant functionf (p) for positivep @17,18# corresponds to an
assumption of log-Poissonian statistics for the energy c
cade@22#. Analogously, models defined by other functio
f (p) can be traced back to different statistical mechanis
J

er
d
-

s-

s

which would be interesting to test in a direct way. Investig
tions in this direction are progressing.
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