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Biasymptotic formula for the turbulent energy cascade
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We present a family of differential models for the scaling exponeptshich characterize the moments of
the energy dissipation rate in turbulence. This scheme interpolates between the asymptotic values of the
derivativerr’, of 7, versusp in the limits p— = and reproduces the negatipegpart of the exponents spectrum
7, as well, in contrast with other recent conjectures. Each member of the family is defined by a sigmoidal
function, the form of which remains open to theoretical investigatip®$063-651X99)10510-3

PACS numbegps): 47.27.Gs, 02.56-r, 05.40—a

I. INTRODUCTION refined hypothesi&62) [3,4] which assumed Eq1.3) to be

One of the most striking features of turbulent flows at? particular case of the more general refation

high Reynolds number is the apparent universality of small- (dP(/))~ /P(ePI3( 1)) (1.4
scale velocity fluctuations, for which the effects of the

boundary conditions can be neglected. In particular, the mowhich links the fluctuations of the velocity field with those of
ments of suitable observables characterizing spatial domainge dissipation field. By defining energy dissipation expo-

of size/ present a power-law dependence Anwith uni- nents, via the moments
versal exponents. This is expected to hold in the so-called
inertial range / min</ </ max» Where /o is the energy- Mp(/)=(eP(/))~ 7", (1.5

injection scale and’,,, is the length below which dissipa-
tion prevails. For example, the moments of the longitudinatthis link is finally expressed by

velocity difference d(/)=[v(x+/7,t)—v(xt)]- 71/,

wherev(x,t) is the velocity field of the fluid at the space- {p=PI3+ Tp3. (1.6
time point ,t) and/ is a displacement vector of length

are expressed as Experiments show that the exponenis deviate consider-

ably from zero, especially for larggp| [5-7]. The refined
K62 approach, under the assumption of a lognormal statistics

N — AN\ L
Sp(/)={dX(/))~ . .0 for the variables (/), yields the expression

This behavior was first postulated by Kolmogordy under TE)KGZ): — p(1—p)/2, (1.7)
the assumption that energy was passed from the large to the
small scales without alteration in the inertia_l r_ar(gé), SO wherer,~—0.18[5-8]. While Eq.(1.7) provides a good fit
that the only relevant parameters for the statistics weasd g the data for 6 p=<2, the parabolic falloff of the curve is
the mean energy dissipation re(pe(/)}_, which is nearly”  too steep.
independent. The local ratg/) is defined as Since direct estimates af, for large|p| are statistically
unreliable and our physical understanding of turbulent fluc-
. 2v tuations is not sufficient to yield the form of the functiep,
(/)= EL% S ()S;i(x)dV, 1.2 even up to unknown parameters, simple analytical approxi-
mations tor, have been attempted. The underlying assump-
whereB=B(x;/) is a domain centered atand having vol- tions essentially fall into three classes: in the first, the energy
ume |B|~ /3 ,Si-=(c9v-/¢9x-+¢9v-/¢9x-)/2 is the symmetric cascade is viewed as a multiplicative stochastic process
7>, S i19X; i 19x; Y ) oy
part of the strain rate tensor, ands the kinematic viscosity. [9-14; in the second, assumptions are made about the dis

: tribution of the “breakdown coefficient” e(r/)/e(/)
Furth Kol 1 th IR rel ) . .
urthermore, Kolmogoroy1] proved the exact IR relation [15,16 (where 0<r<1); in the third, assumptions about the

asymptotic behavior ofr, for p— +c are combined with

(d3(/))~ — f/@(/’)) (1.3  scaling laws which relate momenk8,_;, M, andM.,
S [Eqg. (1.5] with one anothef17,18, rather than with the
length scale”.
and applied dimensional considerations to the Navier-Stokes In the present paper, we propose a differential reformula-
equationd 2] obtaining the predictio ,= p/3 (K41). tion of the latter approach which accounts for arbitrary in-

Deviations of the experimental estimates{gffrom this  crements to the ordgy (i.e., not just= 1), modifies accord-
value and theoretical objections led to the formulation of aingly the asymptotic scaling assumption, and takes into
account the limitp— — as well. This goal is achieved by
introducing a class of sigmoidal functions which control the
*URL: http://www1.psi.ch* badii shape(curvature of the exponentr, versusp. Some yield
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better agreement with the experiment foe (—1,3), some Motivated by these inconsistencies, we first reformulate

outside this range. As a result, the differences among varioutie SL approach using an arbitrary incrembrfor the mo-

current approximationgl6—19 and their relative degree of ment's orderp and later extend it by introducing a scaling

success can be easily assessed. exponent forZ (p+h,p) in the limit p— — as well. We
Since these are essentially phenomenological models, no¢write Eq.(2.2) as

based on any real physical understanding of the basic mecha-

nisms of turbulence, our introduction of a whole class of Z,(p+h,p)~ZP(e+h,»)Z) "(p,p—h), (2.6

model functions should not be dismissed as a mere technical . )

artifact to achieve a fit but seen as a further confirmation thaihere Z(=+h,)=lim,_..Z (p+h,p), b=0 is a con-

no physical criterion presently exists to discriminate betweer$tant andh is an arbitrary real increment. This equation

possible models. As already suggested in RE], it is un-  clearly implies the vicinity ofZ (p+h,p) andZ,(p,p—h)

likely that this goal may be achieved by experiment only.(@n identity forh—0) and attributes a “weight” to the

Indeed, all of the functions we consider provide good fits todsymptotic valueZ,(«+h,») which vanishes forh—0

the experimental estimates. The latter have been performdée., the first factor on the right-hand siRHS) of Eq. (2.6)

on different measurements of atmospheric turbulence withends to 1. Assuming

Reynolds-Taylor numbers around 10000, sampling rates be- t.h

tween 2 and 30 kHz, spatial resolution of 2 mm, and 12-bit Z (@ +he)~/ 0 2.7

accuracy{7,8].

and recalling Eq(1.5) yields
Il. MODEL Tprh— Tp=~—bt h?+(1-bh)(7,— 7p_p). (2.8

Rather than studying th€ dependence of the moments
M,(7) (1.5), She and Leeque[17] have proposed to com-
pare moments of different ordprwith one another at a fixed

Subtractingr,— 7,1, from both sides, dividing by?, and
taking the limith— 0 yields the differential equation

scale/”: in particular, they considered the ratio Th~—br,—bt,, (2.9
Z,(p,q)=Mp(/)Mq(/)~/""Ta (2D where each prime denotes a derivative with respecp.to
_ , Equation(2.9) is the analog of the finite-differences relation
for g=p—1 and postulated the relation (7) of Ref.[17]. Upon integration, and recalling Eq2.3),
one obtains

Z,(p+1p)=AZ%(p,p—1)Z} Fle+1m), (2.2

t
where A, is independent of’, 3 is a constant, and (% Tp=1+(1—'yp)—t+p, (2.10
+10°)=lim,_..Z,(p+1p). By inserting Eq. (1.5 into Y
(2.2), assuming thaf (e + 1)~/ ", with t . =2/3, and

; - wherey=e . Notice that an additional assumption made in
using the relations

[17] about the codimension of the set of points supporting
2.3 the most intense events in a turbulent flow is not necessary in
' the present derivation. In fact, SL's and CC'’s formu(as})
and (2.5), are recovered by the positions,(,y) = (2/3,2/3)
and ¢, ,y)=(1,1+ 75), respectively.
2\P In order to treat the regiop<<0, in such a way that no
§> . (2.9 exponential divergence occurs, it is necessary to allow for a
change of sign before the first derivative gf in Eq. (2.9).

Although this formula is close to the experimental findings, MOreover, we make a linearity as;ur_nptign forin trg)e limit
the choicet, = 2/3 has been criticized by Novikdd6], who ~ P—— [7]: in fact, in such a limit,(e (/»fsmin(/)'
proposed the valug, = 1: this has led to a numerical modi- Whereem, is the minimum value assumed by/), and Eq.

fication of the SL formula by Chen and CEtS] which reads (1.5 implies thatr,~t_p, for somet_. Hence, in analogy
with Eqg. (2.7), we assume

To=711=0,

She and Leeque (SL) finally obtained

2
A= Zpr2|1-

(CO_ _ p_
S p+[(1+7)P—1]/7,. (2.9 Z(—e0+h,—oe)~ /1, 2.10
While the latter is closer to the experimental results in th
range— 0.5<p=<05, the former is slightly more accurate for
p>5 [7]. Moreover, both functions exhibit an exponential
falloff for negativep which is in stark disagreement with the
observation. This should not be surprising, since these mod- lim f(p)=—1
els are based on a conjecture about the Ipnitec. Indeed, a w '

e\Ne further interpolate between the two asymptdteg and
—t,p by introducing a functionf(p) with the following
properties:

linear behavior ofr, seems to be correct, within the avail- P

able precision, also fop<0 [7]. Finally, the scaling law f'(p)=0, f"(a)=0, —w<a<+ew, (2.12
(2.2 is not well verified, especially for smalp|, where the

increment by 1 irp is too large(a simpler and more accurate lim f(p)=+1,

relation between moments has been illustrated in R@f. Pt
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i.e., the function has two horizontal asymptotes and an inA first integration yields
flection point atp=a: three examples are shown in Fig. 1. b
Accordingly, we modify Eq(2.8) to A_e’P+t_ forp<a,

! = 2.1
2 T A e PP—t, forp>a, (2.19
Tprn~ Tp~~ 5 (- [1=F(p) ]+t [1+f(p) ]} whereA_ andA, are constants. A second integration finally
yields the “biasymptotic” formula
+[1-bhg(p)](7p— Tp-n), (2.13
A_
b
where the first term on the RHS accounts for the switch b€ PHtp+B. forp<a,
between the contributions of the two asymptotes and the o= 2.17
functiong(p) in the second term on the rhs satisfies the same P N
conditions asf(p), so that the sign in front of, changes —Fe_bp—t+p+ B, forp>a,
upon variation ofp: this ensures that no exponential diver-
gence occurs fop— —<. _ which contains the two further constarBs and B, . The
The continuous limith—0, now yields values ofA. andB. can be fixed by imposing the continuity
R , of 7, and 7, at p=a and recalling relation§2.3):
7o~ —bg(p) 7, —b[S+Df(p)], (2.14

A_eP+t_ =A e 30—t
where S=(t, +t_)/2 and D=(t,—t_)/2. For simplicity,
we posef(p)=g(p) in the following. Forp>1, Eq.(2.19 A, Ay,
reduces to Eg(2.9). The asymptotic limit$p|— are easily B +at_+B_=- o€ —at, +B.,
verified: setting limy, _..7,=0, in fact, yieldsr,— —t, , for
p—+, andr,—t_, for p— —o.

Equation(2.14) defines a class of modelsore precisely, 'y +B_=0,
fit functions 7,,), one for each choice of the functiorigp)
and g(p), which depend on four parameterb; which A
weighs the relative importance of the asymptotic values of - F*e*b_t++|3+:o_

Z,(p+h,p) with respect to the current orjeee Eq.(2.6)]

and is the counterpart ¢f in Eq. (2.2), the asymptotic slopes
t, andt_, and the valugp=a at which the functionf(p) [1l. COMPARISON WITH THE EXPERIMENT
[andg(p)] has the inflection point. Of course, bofthp) and . :
g(p) might contain more parameters: in the following, how- The test fuant'onTp 0:; Eq. (i'm con_tamsffOL;]r_ uhn_knovyn
ever, we shall constrain ourselves to elementary function@arametersg, b, t_, andt. ), the meaning of which is quite

which satisfy conditiong2.12), with the further simplifica- Ccl€ar:a determines the position of the maximumay, b the
tion f(a)=0. speed of the crossover from a parabolic shape arqund

The simplest choice for analytical calculations figp) S in the K62 equatiofil.?)] to a straight line behavior for

—g(p)=2H(p—a)—1, whereH(x) is the Heaviside step |P|—%,andt_andt, are the asymptotic slopes.
fur?éfi)())n [20](pUpo)n substitution (E)q(z 14) reads P Lack of physical insight in the mechanisms of turbulence
' T makes an estimation of these parameters utterly difficult. So

far, not even the valua~0.5 has been explained: to our
(2.15  knowledge, the question itself of the position of the maxi-
br,—bt, forp>a. mum of 7, has never been posed. Similarly, the portion of
the curver, vsp for p<<O has not been studied until recently
[7]: therefore, no guess exists about the valud of Vice
versa, at least two proposals exist far, as discussed above
in connection with equation§2.4) and (2.5). Finally, the
value ofb is the least likely to be fixed by straightforward
physical considerations, since it depends on the form of the
function f(p) used to interpolate between the asymptotic

o —~+———+—FF ] s
[ / ] limits p— * o,

[ bry—bt_ forp<a,

o) |
05 |

r 7 ] In fact, comparison with the experimental data shows that
=05 - T ] a broad class of function§(p) yields equally accurate fits
i T ] (of course, for different parameter valiiehis should not
J T 1 be surprising since even the step function provides good re-
E— — sults, notwithstanding its discontinuity. In addition to
2H(p—a)—1, we have tested the following functiorwe
FIG. 1. Three of the sigmoidal functiorigp) vs p employed in ~ POS€ x=p—a, for simplicity): sgn)[1—e~"], tanh),
the computation ofr,: at p=2 (indicated by the vertical dashed x/\1+x?, and 2arctang/.

line) these functions are, from top to bottom, tamhe), The curver, vs p from Eq. (2.17) that best fits the ex-
(p—a)/\1+(p—a)?, and 2 arctar{—a)/, with a=0.5. perimental data is shown in Fig. 2: the length of the error




PRE 60 BIASYMPTOTIC FORMULA FOR THE TURBULENT ... 4141

-3 - - 1 | 4 | 1 [

| | | | |
-5  -25 0 2.5 5 p 75 o RS 0 25 5 p 70

FIG. 3. Difference between the curvg vs p, estimated as in
Fig. (2), and the best fitting curves obtained from Eq(2.17)
gsing the error bar lengths as weights=(L, open circlesand no
weights at all {=2, solid circles.

FIG. 2. Values ofr, vs p, estimated from various atmospheric
time series, compared with the best fitting curve obtained from Eq
(2.17). The length of the error bars has been used as a weight in
Marquardt-Levenberg least-square algorithm.

bars, estimated from comparison among various atmospherlaw behavior is currently under investigation. Also, correc-
time serieg 7], was used as a weight for the data points. Thetions to scaling arising from the influence of large-scale fluc-
resulting parameter values am=0.475, b=0.278, t_ tuations[21] could be profitably applied.
=1.06, andt,=0.873. Whilea is indistinguishable from Finally, in order to test the symmetry of the curvevs p
0.5, within the resolution allowed for by the statistical errors,aroundp=1/2, we have postulated the extended scaling re-
the other three values are close to those of the CC formulkation
(2.5. This, in fact, predictsb=— In y=— In(1+r,)~0.25
[see Eq(2.10], and assumes. =t =1. A similar fit, made MpNMiEpv (3.1
with uniform weights, however yielda=0.488, b= 0.468,
t_=0.717, and ;. =0.656: that is, values much closer to the whereM  is defined in Eq(1.5) anda,=7,/7,_, is a new
SL formula(2.4) (for which b=0.406 andt_=t, =2/3). exponent to be estimated directly from Eg§.1). Asymmetry
The range in whiclp has been varied has been confinedis, hence, characterized by the deviationagffrom 1. The
to [—4,7] in order to avoid fitting highly unreliable data results, reported in Fig. 4, confirm a definite asymmetry
points: belowp= —4, signal discretization and instrumental which cannot be easily detected from inspection of Fig. 2 but
noise are the main hindrance to the analysis; alpov@ low  which is clearly revealed by the fits made with the biasymp-
statistics and, possibly, nonstationarity play a major role. Estotic formula(2.17).
timates made at higpb values(e.g.,p>10), as often reported
in the literature, should be taken with skepticism. Notwith- IV. CONCLUSIONS
standing these precautions and the good quality of our data . ) ) )
(high Reynolds-Taylor number, resolution and sampling We have introduced a family of dllffgren.tlal modgls for
rates, the precision of the results is not sufficient to discrimi- the scaling exponent of the energy dissipation rate in turbu-
nate between different interpolating functioi{®) or differ- Ience. They are characterized by S|gm_0|dal functions and re-
ent models. For comparison, we mention that a good fit i§luire physical input for(at least four different parameters.
obtained with f(x)=2 arctanf)/m, a=0.5, t_=0.71, t, Compar_lson W|Fh the.expenment shoyvs that good results can
—0.63, andb=0.38. The biasymptotic formula E¢2.17), be p_btalned with quite a broad ch0|ce.of.vallues, both for
while showing a much better agreement with the data thaRoSitive- and negative-order energy dissipation moments.
SL’s or CC’s formulas, which diverge exponentially fpr
— —oo, does not definitely turn the scale in favor of either L
contender. P L
In Fig. 3, we display the differences between the esti- 1F
mated values of, and the two best-fit functions described i
above(with uniform and nonuniform weightsThe weighted
fit (open circlegis closer to the experiment for0p<2 but
more distant fopp<—3 andp>6 [as already remarked, it
yields a curve close to E¢2.5 which has similar featurés
It must be noticed that these fits are made over all values of
p and not only forp>0, which is the range of “validity” of
the “one-sided” SL-CC approaches.
These results show, once more, that the question of the -8 ° 25 5 oy
) K . P .
asymptotic behavior of,, for [p|—o can hardly be settled
from experimental datfl9], unless considerably better esti-  FIG. 4. “Symmetry” exponenta,=7,/7,_, vs p, estimated
mators ofr,, are found. An improved scaling relation, which from Eq.(3.1) for the same data as in Fig. 2. The smallest value of
accounts for deviations of the momens5 from power-  p considered is 0.5, wher,=1.
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Therefore, we confirm the difficulty of fixing such param- which would be interesting to test in a direct way. Investiga-
eters by experiment only. tions in this direction are progressing.
Hints for a physical modeling, however, can be obtained
from the differential equations. Indeed, the choice of a con-
stant functionf(p) for positivep [17,1§ corresponds to an ACKNOWLEDGMENTS
assumption of log-Poissonian statistics for the energy cas-
cade[22]. Analogously, models defined by other functions We gratefully acknowledge the receipt of data from M.
f(p) can be traced back to different statistical mechanismé$urger, J. Peinke, and R.O. Weber.
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